- 马宏伟;晁勇;薛旭升;毛清华;王川伟;
针对掘锚机器人在行驶过程中存在行驶位移检测精度低的问题,以已支护锚杆为定位基准,通过分析掘锚机器人与已支护锚杆之间的距离关系,建立“掘锚机器人-已支护锚杆”定位模型,提出一种基于双目视觉的掘锚机器人行驶位移检测方法。煤矿井下环境复杂,采用传统的Census变换算法得到的视差图具有局限性,通过分析双目视觉测距原理,提出一种改进Census变换算法获取锚杆的视差图,得到锚杆图像的深度信息;提出一种锚杆特征的识别与定位方法,利用边缘检测算法对视差图中的锚杆进行轮廓提取,采用最小外接矩形与最大外接矩形算法对锚杆轮廓进行框选,提取锚杆特征点的像素坐标,通过分析坐标转换关系将特征点像素坐标转换为世界坐标,采用最小二乘法将特征点空间坐标拟合成一条直线,经过该直线建立平行于巷道截面的平面,解算双目相机与该平面之间的距离,进而得到掘锚机器人与该平面之间的距离。搭建移动机器人平台进行掘锚机器人行驶位移检测实验,结果表明:改进后的Census变换算法使误匹配率从19.85%降低到11.52%,较传统Census变换算法的误匹配率降低了41.96%;锚杆特征点识别与定位方法能够有效提取锚杆特征点的空间坐标,经过直线拟合得到相机与3个平行截面之间的距离分别为3 010.428,2 215.910,1 415.127 mm。在机器人定位实验中,将真实计算位移与理论位移进行对比,结果表明,真实计算位移曲线与理论位移曲线基本重合,理论位移与计算位移误差不超过20 mm,可实现掘锚机器人的自主、准确、实时位移检测。
2022年12期 v.48;No.321 16-25页 [查看摘要][在线阅读][下载 2041K] [下载次数:323 ] |[网刊下载次数:0 ] |[引用频次:2 ] |[阅读次数:29 ] - 毛清华;李世坤;胡鑫;薛旭升;姚丽杰;
带式输送机煤流中会掺杂锚杆、角铁、木条、矸石、大块煤等异物,易导致输送带撕裂、转接处堵塞甚至断带。针对带式输送机巡检机器人难以在井下光照不均及带式输送机高速运行环境中高效、准确识别异物及模型部署不便等问题,以及YOLOv7模型对目标特征提取能力高,但识别速度较慢的特点,提出了一种基于改进YOLOv7的煤矿带式输送机异物识别方法。运用限制对比度自适应直方图均衡化方法对采集的带式输送机监控图像进行增强,提高图像中物体轮廓的清晰度;对YOLOv7模型进行改进,通过在主干提取网络引入轻量化无参注意力机制,提高模型对图像复杂背景的抗干扰能力和对异物特征的提取能力,同时引入深度可分离卷积代替主干特征提取网络中的普通卷积,提高异物识别速度;使用TensorRT引擎将训练后的改进YOLOv7模型进行转换并部署在NVIDIA Jetson Xavier NX上,实现了模型的加速。对煤矿井下分辨率为1 920×1 080的带式输送机监控视频进行识别,实验结果表明:改进YOLOv7模型的识别效果优于YOLOv5L和YOLOv7模型,识别精确率达92.8%,识别速度为25.64帧/s,满足精确、高效识别带式输送机异物的要求。
2022年12期 v.48;No.321 26-32页 [查看摘要][在线阅读][下载 1697K] [下载次数:3171 ] |[网刊下载次数:0 ] |[引用频次:36 ] |[阅读次数:59 ] - 薛旭升;杨星云;齐广浩;马宏伟;毛清华;尚新芒;
机器视觉已在煤矿带式输送机分拣机器人目标检测与识别方面具有一定的理论基础,但目前煤矿带式输送机分拣机器人目标识别主要针对煤矸石识别,对造成输送带穿透、撕裂等的异物目标识别的研究较少,且在目标异物精确定位方面的研究也较少。针对上述问题,设计了一种基于机器视觉的煤矿带式输送机分拣机器人异物识别与定位系统,可对输送带上存在的不同类型和不同形状的异物进行识别与定位。采用双目视觉实时获取输送带上异物图像信息,并对图像进行预处理,基于Canny算子进行图像信息增强,通过灰度拉伸方法改进图像边缘信息,突出煤矿带式输送机上异物的边缘特征;利用形态学方法提取异物形状特征,建立异物图像特征样本库,通过图像特征匹配的方式解算出异物存在区域,实现异物类型的检测、分类与识别;在异物类型成功识别的基础上,以目标异物边缘特征值为基础,建立目标异物的感兴趣区域(ROI),构建相机、输送带与目标异物坐标转换关系,利用多目标质心快速计算方法求取目标异物质心坐标,实现对目标异物的定位。系统样机实验结果表明:煤矿带式输送机分拣机器人异物识别与定位系统异物识别率不受尺寸、材质和颜色等因素影响,能够实现输送带目标异物图像的采集、处理、特征提取、识别和位置定位,识别率为92.5%以上,目标异物位置定位平均误差为3%左右。
2022年12期 v.48;No.321 33-41页 [查看摘要][在线阅读][下载 2175K] [下载次数:573 ] |[网刊下载次数:0 ] |[引用频次:20 ] |[阅读次数:33 ] - 张烨;马宏伟;王鹏;曹现刚;魏小荣;周文剑;
煤矿井下矸石被煤泥包裹,煤矸石识别难、分拣难;井下工作空间狭小,设备布局难、煤矸石分流难,因此,需要研发高性能、高可靠的煤矸石智能分拣机器人。分析了煤矸石智能分拣机器人中煤矸石识别、机器人轨迹规划、多动态目标多机器人协同控制技术的研究现状。指出煤矸石分拣工作环境复杂,其质量和形状不规则且呈随机分布,因此,复杂环境下煤矸石识别与抓取特征提取、非结构环境下煤矸石稳定可靠抓取、多目标任务多机器人智能协同分拣是煤矸石分拣智能机器人的3大关键技术,提出要实现机器人智能分拣煤矸石,还应在适应于井下的煤矸石识别与抓取特征提取、动态目标精确定位和同步跟踪、机械臂在线轨迹规划和多机械臂智能协同控制等方法上进行深入研究。通过对上述3大关键技术的梳理,总结得出:煤矸石数据集构建与扩增、煤矸石识别与抓取特征提取是实现煤矸石高效识别的关键技术;动态煤矸石精准跟踪、机械臂同步跟踪动态目标轨迹规划和快速大质量目标稳定抓取是实现机械臂稳定抓取煤矸石的关键技术;多任务高效分配、防碰撞路径规划和智能协同控制是实现多机械臂高效智能协同分拣的关键技术。针对目前存在的共性问题,提出了解决方案:在识别方面,研究基于多模态深度学习的煤矸石识别与抓取特征提取方法,实现井下煤矸石快速识别;在轨迹规划方面,研究动态煤矸石精准定位和实时跟踪方法,实现机器人对动态煤矸石的自适应稳定抓取;在协同分拣方面,构建多层多机械臂协同控制模型,实现多机械臂复杂环境下高效智能协同分拣。
2022年12期 v.48;No.321 42-48+56页 [查看摘要][在线阅读][下载 1572K] [下载次数:736 ] |[网刊下载次数:0 ] |[引用频次:10 ] |[阅读次数:26 ] - 马艾强;姚顽强;蔺小虎;张联队;郑俊良;武谋达;杨鑫;
针对煤矿井下喷浆表面、对称巷道等引起移动机器人自主导航定位与建图失效问题,提出了一种面向煤矿巷道环境的激光雷达(LiDAR)与惯性测量单元(IMU)融合的实时定位与建图方法。首先对原始点云进行分割,利用IMU预积分位姿去除原始点云非线性运动畸变,并对得到的点云进行线、面特征提取。然后将相邻帧的线、面特征进行匹配,在分层位姿估计过程中融合IMU预积分所得到的位姿初值,减少计算迭代次数,提高特征点匹配的精度,解算出当前帧的位姿。最后向因子图中插入局部地图因子、IMU因子、关键帧因子,对位姿进行优化约束,对关键帧与局部地图进行匹配,通过八叉树结构实现地图构建。为验证所提方法的定位性能与建图效果,搭建了Autolabor、VLP-16 LiDAR和Ellipse-N IMU的实验平台进行验证,并与LeGO-LOAM、LIO-SAM方法进行定性定量对比分析。结果表明:(1)在煤矿巷道环境中,面向煤矿巷道环境的LiDAR与IMU融合的实时定位与建图方法三轴方向的绝对定位误差的均值和中值均小于32 cm;对X轴的位姿估计精度最高,其累计误差为1.65 m,位置偏差为2.97 m,建图效果整体良好,建图轨迹未发生漂移;构建的点云地图在完整性和几何结构真实性方面均有着优秀的表现,可以直观反映巷道环境的实际情况,具有良好的鲁棒性。这是因为点云匹配之后进行了分层位姿估计,多因子优化可有效降低全局累计误差,对轨迹精度和地图的一致性提升具有重要作用。(2)在楼道走廊环境中,面向煤矿巷道环境的LiDAR与IMU融合的实时定位与建图方法三轴的误差均小于1.01 m,误差均值为5~15 cm,误差范围小,精度高;累计位置偏差仅为1.67 m;完整性与环境匹配均有良好的性能。这是由于通过增加关键帧因子,插入因子图对其新增节点相关变量进行优化,降低了位姿估计漂移,定位与建图精度相对较高。
2022年12期 v.48;No.321 49-56页 [查看摘要][在线阅读][下载 2490K] [下载次数:476 ] |[网刊下载次数:0 ] |[引用频次:8 ] |[阅读次数:28 ] - 邹筱瑜;黄鑫淼;王忠宾;房东圣;潘杰;司垒;
煤矿井下移动机器人作业精度严重依赖于同步定位与建图(SLAM)技术的准确性。井下长直巷道存在特征缺失、光照条件差等问题,导致激光里程计和视觉里程计易失效,因而限制了传统SLAM方法在煤矿巷道的有效应用,且目前SLAM方法的研究主要聚焦于多传感融合建图方法,较少关注激光SLAM方法建图精度的提升。针对上述问题,面向移动机器人在煤矿巷道的建图需求,提出了一种基于集成式因子图优化的煤矿巷道移动机器人三维地图构建方法,采用前端构建和后端优化的策略,设计了前端点云配准模块和基于滤波、图优化的后端构建方法,使建图结果更准确、适应性更强。针对煤矿长直巷道环境退化导致三维激光点云配准精度低的问题,融合迭代最近点(ICP)和正态分布变换(NDT)算法,兼顾点云几何特征和概率分布特征,设计了集成式前端点云配准模块,实现了点云的精确配准。针对三维激光SLAM后端优化问题,研究了基于位姿图和因子图优化的后端构建方法,构建了集成ICP和NDT相对位姿因子的因子图优化模型,以准确估计移动机器人位姿。分别利用公开数据集KITTI和模拟巷道点云数据集对三维地图构建方法在不同工况下的性能进行了实验验证。公开数据集KITTI上的实验结果表明:在全局一致性上,该方法与传统基于特征点匹配的A-LOAM方法和基于平面分割及特征点提取的LeGO-LOAM方法具有相似的性能,在建图局部精度上优于其他2种方法。模拟巷道点云数据集上的实验结果表明:该方法具有显著优势,通过因子图优化,可得到一致性较高的三维地图,提升了煤矿巷道三维地图构建的精度及鲁棒性,解决了井下长直巷道特征点缺失、激光里程计失效的难题。
2022年12期 v.48;No.321 57-67+92页 [查看摘要][在线阅读][下载 3220K] [下载次数:482 ] |[网刊下载次数:0 ] |[引用频次:11 ] |[阅读次数:24 ] - 李猛钢;胡而已;朱华;
煤矿井下机器人同步定位与地图构建(SLAM)是当前研究热点,但针对提高激光SLAM在井下复杂条件下精度、鲁棒性的研究仍然不足;传统激光SLAM方法在井下复杂环境下存在累计误差迅速增大、旋转过程鲁棒性差、特征关联错误率高等问题;现有激光-惯性融合的定位建图紧耦合融合机制仍需进一步提高对煤矿井下复杂环境的适应能力。针对上述问题,提出了一种煤矿机器人LiDAR(激光雷达)/IMU(惯性测量单元)紧耦合SLAM方法(LI-SLAM方法)。首先利用IMU观测信息预测点云运动状态并进行有效补偿,减少由于剧烈振动、快速旋转等恶劣运动工况导致的点云畸变;然后提取雷达点云的边线与平面特征,基于点-线和点-面扫描匹配构建激光相对位姿约束,并在向量空间与流形空间解析推导了约束的残差、雅可比矩阵、协方差矩阵构建过程;最后通过构建雷达相对位姿约束因子、IMU预积分约束因子、回环检测约束因子,基于因子图优化方法完成LiDAR/IMU紧耦合,实现井下复杂环境下煤矿移动机器人的定位与地图构建。为了验证LI-SLAM方法在颠簸路面、复杂场景的精度与鲁棒性,基于煤矿轮式移动机器人平台,在野外、地下车库环境下进行了试验,在晋能集团塔山煤矿开展了工业性试验,并与当前最优的激光里程计与建图(LOAM)方法、激光雷达惯性状态估计(LINS)方法、雷达惯性里程计与建图(LIO-mapping)方法进行了对比。在野外颠簸路面的试验结果表明:LI-SLAM方法和LOAM方法的地图一致性最好,与真实路线基本吻合,LI-SLAM方法对旋转有更佳的适应能力,距离误差最小;LIO-mapping方法无法实时运行,在0.5倍速下可以获得完整轨迹,但在初始运动阶段出现了较大程度的方向偏移,初始化过程容易失败;LINS方法由于仅利用了最新的观测信息,在复杂地形下出现了漂移。地下车库环境下的试验结果表明:与LOAM方法、LINS方法、LIO-mapping方法相比,LI-SLAM方法具有较高的建模精度,局部精细化程度更高,运动轨迹更平滑。煤矿井下现场工业性试验结果表明:LI-SLAM方法在各类地形环境中均可以稳定、在线运行,满足鲁棒性、实时性需求;在煤矿移动机器人行驶巷道直线距离为273 m时,分析30组距离结果,平均误差小于15 cm,具有较高的定位和建模精度,基本满足煤矿移动机器人的定位建模精度需求,对于煤矿井下复杂环境下的移动机器人精确定位与地图构建有更好的适用性。
2022年12期 v.48;No.321 68-78页 [查看摘要][在线阅读][下载 2798K] [下载次数:557 ] |[网刊下载次数:0 ] |[引用频次:12 ] |[阅读次数:31 ] - 郁露;唐超礼;黄友锐;韩涛;徐善永;付家豪;
针对煤矿井下环境复杂,现有煤矿机器人定位方法受非视距误差等因素影响导致定位精度低、实时性不高等问题,提出了一种基于UWB(超宽带)和IMU(惯性测量单元)的煤矿机器人紧组合定位方法。首先利用UWB模块测量煤矿机器人与UWB基站之间的距离,使用煤矿机器人与UWB基站之间的距离真实值和实测值训练最小二乘支持向量机(LSSVM)模型,得到LSSVM修正模型;然后将煤矿机器人定位过程中UWB模块测得的实测值作为LSSVM修正模型的输入,通过LSSVM修正模型对UWB实测值进行修正,减小非视距误差对定位精度的影响,得到较为准确的距离信息;最后将经过LSSVM修正模型修正后的测距信息作为误差状态卡尔曼滤波(ESKF)的量测输入,与惯性导航解算出的位置信息构成量测方程,使用ESKF对UWB测距修正值与惯性导航解算的距离信息紧组合,完成状态更新,得到更为精确的位置信息,实现煤矿机器人的精确定位。UWB基站不同布置方案下的模拟实验结果表明:使用LSSVM修正模型可使UWB测距信息更为准确,进而提高定位精度。静态定位实验时,当4个UWB基站等高对称布置时,定位的均方根误差由0.146 4 m减小到0.1398 m;当4个UWB基站不等高对称布置时,均方根误差由0.300 8 m减小到0.200 6 m;当4个基站无规律布置时,均方根误差由0.317 5 m减小到0.314 2 m。因此,在实际场景中,应尽可能使UWB基站等高对称布置。动态定位实验时,通过LSSVM修正模型对UWB测距信息进行修正后的融合定位轨迹相较于修正前的融合定位轨迹更接近煤矿机器人的真实轨迹,验证了该紧组合定位方法能够减小非视距误差,提高定位精度。
2022年12期 v.48;No.321 79-85页 [查看摘要][在线阅读][下载 2145K] [下载次数:628 ] |[网刊下载次数:0 ] |[引用频次:10 ] |[阅读次数:52 ] - 李世军;任怀伟;张德生;马梓焱;周杰;赵叔吉;杜明;
巷道冲尘机器人可有效解决煤矿巷道积尘问题,但目前尚未有相对成熟的产品能够实现“积尘自动监测-自主/半自主移动-自适应冲尘作业”。分析了国内外研发的轮轨式巷道冲尘装置、防爆洒水车、整车底盘外加液压机械臂的隧道冲尘车3种冲尘装备的研究现状,指出轮轨式巷道冲尘装置不含动力系统,巷壁积尘的冲尘效果受到限制;防爆洒水车自带动力,能够实现无轨长巷道全断面粉尘降尘,但喷水面较广,无法处理巷壁及管线等局部积尘严重区域;隧道冲尘车可解决长距离隧道积尘问题,但仍需人工驾驶及操作,且无法实现隧道积尘监测及自适应冲尘。通过上述分析,指出巷道冲尘机器人为了实现“积尘自动监测-自主/半自主移动-自适应冲尘作业”,需要从积尘监测、冲尘装置结构设计与控制、冲尘模式优化策略等方面进行研究。并指出上述研究面临的主要技术难题不仅包括防爆安全设计、井下精确定位、长距离无线通信等煤矿机器人共性难题,还包含积尘监测、自适应冲尘、车臂协同作业等巷道冲尘机器人特性难题。针对巷道冲尘机器人特性难题,提出了相应的关键技术:(1)研发基于称重法、激光法、图像法相结合的多传感器融合的巷道积尘监测技术,实现煤矿巷道积尘长期监测及冲尘效果动态评估。(2)开发基于防爆机械臂和“风-水-刷”联动冲尘装置的冲尘结构,实现自适应冲尘。(3)建立车辆底盘和机械臂的统一工作空间,研发基于力矩控制的巷道冲尘机器人小偏差自动补偿和柔性避障技术,实现动态场景下的巷道冲尘机器人的车臂协同。
2022年12期 v.48;No.321 86-92页 [查看摘要][在线阅读][下载 1711K] [下载次数:268 ] |[网刊下载次数:0 ] |[引用频次:6 ] |[阅读次数:78 ] - 郭爱军;王妙云;马宏伟;张旭辉;薛旭升;杜昱阳;张超;
多旋翼飞行器以其机械结构简单、可悬停和多方向飞行的优点,在煤矿井下生产巡检方面具有良好的应用前景。但多旋翼飞行器移动速度较快,飞行时易受外界各种因素的影响,难以建立精确的数学模型,使得飞行控制算法的设计较为复杂,现有基于激光雷达的同步定位与地图构建方法难以满足多旋翼飞行器快速飞行的实时性要求。针对上述问题,研究了一种利用虚拟远程操控技术对煤矿井下多旋翼飞行器进行避障的控制方法。构建了煤矿井下巷道多旋翼飞行器虚拟远程操控系统,根据煤矿巷道初始信息在虚拟远程操控系统中建立虚拟巷道模型及全局导航地图,获得飞行器移动过程中已知的静态障碍物信息,建立已知的静态环境模型,减少多旋翼飞行器运动过程中对环境感知建模的任务量,提高虚拟远程操控的运行效率。在巡检过程中,多旋翼飞行器通过自身携带的传感设备检测移动方向的动态障碍物信息,虚拟远程操控系统将动态障碍物信息实时重建于初始虚拟巷道模型中,对虚拟环境状态进行实时更新,为飞行器局部避障控制提供可靠的环境依据;虚拟远程操控系统通过读取障碍物与飞行器的位置数据和移动速度信息,采用复合虚拟势场(CVFF)避障控制算法进行避障路径规划,如果检测到前方障碍物对飞行器移动产生较大威胁,远程操控人员可根据规划的避障路径对飞行器进行远程干预,实现了自主避障飞行和人为远程干预控制。为提高飞行器对动态障碍物的感知效率和精度,在虚拟势场(VFF)算法的基础上引入飞行器与障碍物、目标点之间的相对速度影响,提出了一种CVFF避障控制算法。从静态和动态障碍物避障路径2个方面对CVFF避障控制算法进行仿真验证,结果表明:静态情况下,相比VFF算法,CVFF避障控制算法在减少了迭代次数的同时,也缩短了飞行器的轨迹长度;动态情况下,飞行器成功避开了提前设定的2个动态障碍物,顺利到达设定目标点,验证了采用CVFF算法的煤矿井下多旋翼飞行器避障控制方法的有效性。
2022年12期 v.48;No.321 93-100页 [查看摘要][在线阅读][下载 2400K] [下载次数:130 ] |[网刊下载次数:0 ] |[引用频次:3 ] |[阅读次数:26 ]